# MachineLearning **Repository Path**: xsongx/MachineLearning ## Basic Information - **Project Name**: MachineLearning - **Description**: 一些关于机器学习的学习资料与研究介绍 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-05 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 机器学习资源 Machine learning # 本项目已更新,请移步到[这里](https://github.com/allmachinelearning/MachineLearning)参与我们最新的机器学习开源项目 关于机器学习和行为识别的资料,请见我的下面两个仓库: - [行为识别](https://github.com/jindongwang/activityrecognition) - [迁移学习](https://github.com/jindongwang/transferlearning) **致力于分享最新最全面的机器学习资料,欢迎你成为贡献者!** **[Machine learning surveys](https://github.com/metrofun/machine-learning-surveys/)** **[快速入门TensorFlow](https://github.com/aymericdamien/TensorFlow-Examples)** - - - ## 预备知识 Prerequisite - Python - [Learn X in Y minutes](https://learnxinyminutes.com/docs/python/) - [Python机器学习互动教程](https://www.springboard.com/learning-paths/machine-learning-python/) - Markdown - [Mastering Markdown](https://guides.github.com/features/mastering-markdown/) - Markdown is a easy-to-use writing tool on the GitHu. - R - [R Tutorial](http://www.cyclismo.org/tutorial/R/) - Python和Matlab的一些cheat sheet:http://ddl.escience.cn/f/IDkq 包含: - Numpy、Scipy、Pandas科学计算库 - Scikit-learn机器学习库、Keras深度学习库 - Matlab科学计算 - Matplotlib画图 - - - ## 理论 Theory - ### 深度学习 Deep learning - ### [强化学习 Reinforcement learning](https://github.com/allmachinelearning/ReinforcementLearning) - ### [迁移学习 Transfer learning](https://jindongwang.github.io/transferlearning/) - ### [分布式学习系统 Distributed learning system](https://github.com/allmachinelearning/Deep-Learning-System-Design) - - - ## 应用 Applications - ### 计算机视觉/机器视觉 Computer vision / machine vision - ### [自然语言处理 Natural language procesing](https://github.com/Nativeatom/NaturalLanguageProcessing) - ### 语音识别 Speech recognition - ### 生物信息学 Bioinfomatics - ### 医疗 Medical - ### [行为识别 Activity recognition](https://github.com/jindongwang/activityrecognition) - ### [人工智能(多智能体) Artificial Intelligence(Multi-Agent)](http://ddl.escience.cn/f/ILKI) - - - ## 文档 notes - [综述文章汇总](https://github.com/jindongwang/MachineLearning/blob/master/notes/survey_readme.md) - [近200篇机器学习资料汇总!](https://zhuanlan.zhihu.com/p/26136757) - [机器学习入门资料](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/MLMaterials.md) - [MIT.Introduction to Machine Learning](http://ddl.escience.cn/f/Iwtu) - [东京大学同学做的人机交互报告](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/FieldResearchinChina927-104.pdf) - [人机交互简介](https://github.com/jindongwang/HCI) - [人机交互与创业论坛](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/%E4%BA%BA%E6%9C%BA%E4%BA%A4%E4%BA%92%E4%B8%8E%E5%88%9B%E4%B8%9A%E8%AE%BA%E5%9D%9B.md) - [职场机器学习入门](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/%E8%81%8C%E5%9C%BA-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%85%A5%E9%97%A8.md) - [机器学习的发展历程及启示](http://mt.sohu.com/20170326/n484898474.shtml), (@Prof. Zhihua Zhang/@张志华教授) - [常用的距离和相似度度量](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/distance%20and%20similarity.md) - - - ## 课程与讲座 Course and talk - [斯坦福机器学习入门课程](https://www.coursera.org/learn/machine-learning),讲师为Andrew Ng,适合数学基础一般的人,适合入门,但是学完会发现只是懂个大概,也就相当于什么都不懂。省略了很多机器学习的细节 - [Stanford CS 229](http://cs229.stanford.edu/materials.html), Andrew Ng机器学习课无阉割版,Notes比较详细 - [CMU 10-702 Statistical Machine Learning](http://www.stat.cmu.edu/~larry/=sml/), 讲师是Larry Wasserman,应该是统计系开的机器学习,非常数学化,第一节课就提到了RKHS(Reproducing Kernel Hilbert Space),建议数学出身的同学看或者是学过实变函数泛函分析的人看一看 - [CMU 10-715 Advanced Introduction to Machine Learning](https://www.cs.cmu.edu/~epxing/Class/10715/),同样是CMU phd级别的课,节奏快难度高 - Coursera上国立台湾大学[林轩田](https://www.coursera.org/instructor/htlin)开的两门课:[机器学习基石](https://www.coursera.org/course/ntumlone)(适合入门),[机器学习技法](https://www.coursera.org/course/ntumltwo)(适合提高)。 - [Machine Learning for Data Analysis](https://www.coursera.org/learn/machine-learning-data-analysis), Coursera上Wesleyan大学的Data Analysis and Interpretation专项课程第四课。 - [Neural Networks for Machine Learning](https://www.coursera.org/learn/neural-networks), Coursera上的著名课程,由Geoffrey Hinton教授主讲。 - 斯坦福大学Feifei Li教授的[CS231n系列深度学习课程](http://cs231n.stanford.edu/)。Feifei Li目前是Google的科学家,深度学习与图像识别方面的大牛。这门课的笔记可以看[这里](https://zhuanlan.zhihu.com/p/21930884)。 - Max Planck Institute for Intelligent Systems Tübingen[德国马普所智能系统研究所2013的机器学习暑期学校视频](https://www.youtube.com/playlist?list=PLqJm7Rc5-EXFv6RXaPZzzlzo93Hl0v91E),仔细翻这个频道还可以找到2015的暑期学校视频 - 知乎Live:[我们一起开始机器学习吧](https://www.zhihu.com/lives/792423196996546560),[机器学习入门之特征工程](https://www.zhihu.com/lives/819543866939174912) - - - ## 相关书籍 reference book - 入门读物 [The Elements of Statistical Learning(英文第二版),The Elements of Statistical Learning.pdf](http://ddl.escience.cn/ff/emZH) - [机器学习](https://book.douban.com/subject/26708119/), (@Prof. Zhihua Zhou/周志华教授) - [统计学习方法](https://book.douban.com/subject/10590856/), (@Dr. Hang Li/李航博士) - [一些Kindle读物](http://ddl.escience.cn/f/IwWE): - 利用Python进行数据分析.azw3 - 跟老齐学Python:从入门到精通.azw3 - Python与数据挖掘 (大数据技术丛书) - 张良均.azw3 - Python学习手册.azw3 - Python性能分析与优化.mobi - Python数据挖掘入门与实践_7242.azw3 - Python数据分析与挖掘实战(大数据技术丛书) - 张良均.azw3 - Python科学计算(第2版).azw3 - Python计算机视觉编程 [美] Jan Erik Solem.azw3 - python核心编程(第三版).azw3 - Python核心编程(第二版).azw3 - Python高手之路 - [法] 朱利安·丹乔(Julien Danjou).azw3 - Python编程快速上手 让繁琐工作自动化.azw3 - Python编程:从入门到实践.azw3 - Python3 CookBook中文版.mobi - 终极算法机器学习和人工智能如何重塑世界 - [美 ]佩德罗·多明戈斯.azw3.azw3 - 机器学习系统设计 (图灵程序设计丛书) - [美]Willi Richert & Luis Pedro Coelho.azw3.azw3 - 机器学习实践指南:案例应用解析(第2版) (大数据技术丛书) - 麦好.azw3 - 机器学习实践 测试驱动的开发方法 (图灵程序设计丛书) - [美] 柯克(Matthew Kirk).a.azw3 - 机器学习:实用案例解析 (O'Reilly精品图书系 - [Packt每日限免电子书精选](http://ddl.escience.cn/f/IS4a): - Learning Data Mining with Python - Matplotlib for python developers - Machine Learing with Spark - Mastering R for Quantitative Finance - Mastering matplotlib - Neural Network Programming with Java - Python Machine Learning - R Data Visualization Cookbook - R Deep Learning Essentials - R Graphs Cookbook second edition - D3.js By Example - Data Analysis With R - Java Deep Learning Essentials - Learning Bayesian Models with R - Learning Pandas - Python Parallel Programming Cookbook - Machine Learning with R --- ## 其他 Miscellaneous - [机器学习日报](http://forum.ai100.com.cn/):每天更新学术和工业界最新的研究成果 - - - ## 如何加入 How to contribute - 直接pull requests - 或者到[这里](https://github.com/allmachinelearning/MachineLearning/issues/1)留下你的Github账号我们把你加入贡献者列表 - PDF等大文件上传方法:登录 http://ddl.escience.cn 用户名:allmachinelearning@163.com,密码:machine123。登录后,在‘个人空间’中上传,然后将文件(夹)链接共享。 - 之后请在贡献者页面加入自己的信息 ## 如何开始项目协同合作 [快速了解github协同工作](http://hucaihua.cn/2016/12/02/github_cooperation/) [及时更新fork项目](https://jinlong.github.io/2015/10/12/syncing-a-fork/) #### [贡献者 Contributors](https://github.com/allmachinelearning/MachineLearning/blob/master/contributors.md)