# lightning-bolts **Repository Path**: uesoft/lightning-bolts ## Basic Information - **Project Name**: lightning-bolts - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2026-02-04 - **Last Updated**: 2026-02-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
**Deep Learning components for extending PyTorch Lightning** ______________________________________________________________________

InstallationLatest DocsStable DocsAboutCommunityWebsiteLicense

[![PyPI Status](https://badge.fury.io/py/lightning-bolts.svg)](https://badge.fury.io/py/lightning-bolts) [![PyPI - Downloads](https://img.shields.io/pypi/dm/lightning-bolts)](https://pepy.tech/project/lightning-bolts) [![Build Status](https://dev.azure.com/Lightning-AI/compatibility/_apis/build/status%2Fprojects%2FLightning-Universe.Bolts?branchName=master)](https://dev.azure.com/Lightning-AI/compatibility/_build/latest?definitionId=51&branchName=master) [![codecov](https://codecov.io/gh/Lightning-Universe/lightning-bolts/branch/master/graph/badge.svg?token=O8p0qhvj90)](https://codecov.io/gh/Lightning-Universe/lightning-bolts) [![Documentation Status](https://readthedocs.org/projects/lightning-bolts/badge/?version=latest)](https://lightning-bolts.readthedocs.io/en/latest/) [![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://www.pytorchlightning.ai/community) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/lightning-bolts/blob/master/LICENSE) [![DOI](https://zenodo.org/badge/250025410.svg)](https://zenodo.org/badge/latestdoi/250025410)
______________________________________________________________________ ## Getting Started Pip / Conda ```bash pip install lightning-bolts ```
Other installations Install bleeding-edge (no guarantees) ```bash pip install https://github.com/Lightning-Universe/lightning-bolts/archive/refs/heads/master.zip ``` To install all optional dependencies ```bash pip install lightning-bolts["extra"] ```
## What is Bolts? Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production. #### Example 1: Accelerate Lightning Training with the Torch ORT Callback Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. See the [documentation](https://lightning-bolts.readthedocs.io/en/latest/callbacks/torch_ort.html) for more details. ```python from pytorch_lightning import LightningModule, Trainer import torchvision.models as models from pl_bolts.callbacks import ORTCallback class VisionModel(LightningModule): def __init__(self): super().__init__() self.model = models.vgg19_bn(pretrained=True) ... model = VisionModel() trainer = Trainer(gpus=1, callbacks=ORTCallback()) trainer.fit(model) ``` #### Example 2: Introduce Sparsity with the SparseMLCallback to Accelerate Inference We can introduce sparsity during fine-tuning with [SparseML](https://github.com/neuralmagic/sparseml), which ultimately allows us to leverage the [DeepSparse](https://github.com/neuralmagic/deepsparse) engine to see performance improvements at inference time. ```python from pytorch_lightning import LightningModule, Trainer import torchvision.models as models from pl_bolts.callbacks import SparseMLCallback class VisionModel(LightningModule): def __init__(self): super().__init__() self.model = models.vgg19_bn(pretrained=True) ... model = VisionModel() trainer = Trainer(gpus=1, callbacks=SparseMLCallback(recipe_path="recipe.yaml")) trainer.fit(model) ``` ## Are specific research implementations supported? We'd like to encourage users to contribute general components that will help a broad range of problems; however, components that help specific domains will also be welcomed! For example, a callback to help train SSL models would be a great contribution; however, the next greatest SSL model from your latest paper would be a good contribution to [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash). Use [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash) to train, predict and serve state-of-the-art models for applied research. We suggest looking at our [VISSL](https://lightning-flash.readthedocs.io/en/latest/integrations/vissl.html) Flash integration for SSL-based tasks. ## Contribute! Bolts is supported by the PyTorch Lightning team and the PyTorch Lightning community! Join our Slack and/or read our [CONTRIBUTING](./.github/CONTRIBUTING.md) guidelines to get help becoming a contributor! ______________________________________________________________________ ## License Please observe the Apache 2.0 license that is listed in this repository. In addition, the Lightning framework is Patent Pending.