# X-AnyLabeling **Repository Path**: monkeycc/X-AnyLabeling ## Basic Information - **Project Name**: X-AnyLabeling - **Description**: 借助 Segment Anything 和其他出色模型的 AI 支持,轻松进行数据标注。 - **Primary Language**: Python - **License**: GPL-3.0 - **Default Branch**: main - **Homepage**: https://github.com/CVHub520/X-AnyLabeling - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2024-04-02 - **Last Updated**: 2025-09-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

X-AnyLabeling

[English](README.md) | [简体中文](README_zh-CN.md)

![](https://user-images.githubusercontent.com/18329471/234640541-a6a65fbc-d7a5-4ec3-9b65-55305b01a7aa.png)
Auto-Labeling
Text/Visual Prompting and Prompt-free for Detection & Segmentation
Detect Anything
Segment Anything
Chatbot
VQA
## 🥳 What's New - Add Re-recognition feature for PP-OCR models [[example](./examples/optical_character_recognition/text_recognition/README.md)] - Add support for [PP-OCRv5](https://github.com/PaddlePaddle/PaddleOCR/tree/main/docs/version3.x/algorithm/PP-OCRv5) model - Add copy coordinates to clipboard feature - Add Navigator feature for high-resolution image navigation and zoom control - Bump version to [3.2.2](https://github.com/CVHub520/X-AnyLabeling/releases/tag/v3.2.2) - Add AI Assistant and prompt template management for VQA - Add support for batch editing multiple shapes simultaneously - Add support for Show/Hide shape attributes on canvas - Add support for automated training platform with Ultralytics tasks in X-AnyLabeling [[Link](./examples/training/ultralytics/README.md)] - For more details, please refer to the [CHANGELOG](./CHANGELOG.md) ## X-AnyLabeling **X-AnyLabeling** is a powerful annotation tool that integrates an AI engine for fast and automatic labeling. It's designed for multi-modal data engineers, offering industrial-grade solutions for complex tasks. ## Features - Processes both `images` and `videos`. - Accelerates inference with `GPU` support. - Allows custom models and secondary development. - Supports one-click inference for all images in the current task. - Enable import/export for formats like COCO, VOC, YOLO, DOTA, MOT, MASK, PPOCR, MMGD, VLM-R1. - Handles tasks like `classification`, `detection`, `segmentation`, `caption`, `rotation`, `tracking`, `estimation`, `ocr` and so on. - Supports diverse annotation styles: `polygons`, `rectangles`, `rotated boxes`, `circles`, `lines`, `points`, and annotations for `text detection`, `recognition`, and `KIE`. ### Model library | **Task Category** | **Supported Models** | | :--- | :--- | | 🖼️ Image Classification | YOLOv5-Cls, YOLOv8-Cls, YOLO11-Cls, InternImage, PULC | | 🎯 Object Detection | YOLOv5/6/7/8/9/10, YOLO11/12, YOLOX, YOLO-NAS, D-FINE, DAMO-YOLO, Gold_YOLO, RT-DETR, RF-DETR | | 🖌️ Instance Segmentation | YOLOv5-Seg, YOLOv8-Seg, YOLO11-Seg, Hyper-YOLO-Seg | | 🏃 Pose Estimation | YOLOv8-Pose, YOLO11-Pose, DWPose, RTMO | | 👣 Tracking | Bot-SORT, ByteTrack | | 🔄 Rotated Object Detection | YOLOv5-Obb, YOLOv8-Obb, YOLO11-Obb | | 📏 Depth Estimation | Depth Anything | | 🧩 Segment Anything | SAM, SAM-HQ, SAM-Med2D, EdgeSAM, EfficientViT-SAM, MobileSAM, | ✂️ Image Matting | RMBG 1.4/2.0 | | 💡 Proposal | UPN | | 🏷️ Tagging | RAM, RAM++ | | 📄 OCR | PP-OCRv4, PP-OCRv5 | | 🗣️ VLM | Florence2 | | 🛣️ Land Detection | CLRNet | | 📍 Grounding | CountGD, GeCO, Grunding DINO, YOLO-World, YOLOE | | 📚 Other | 👉 [model_zoo](./docs/en/model_zoo.md) 👈 | ## Docs 1. [Installation & Quickstart](./docs/en/get_started.md) 2. [Usage](./docs/en/user_guide.md) 3. [Customize a model](./docs/en/custom_model.md) 4. [Chatbot](./docs/en/chatbot.md) 5. [VQA](./docs/en/vqa.md) ## Examples - [Classification](./examples/classification/) - [Image-Level](./examples/classification/image-level/README.md) - [Shape-Level](./examples/classification/shape-level/README.md) - [Detection](./examples/detection/) - [HBB Object Detection](./examples/detection/hbb/README.md) - [OBB Object Detection](./examples/detection/obb/README.md) - [Segmentation](./examples/segmentation/README.md) - [Instance Segmentation](./examples/segmentation/instance_segmentation/) - [Binary Semantic Segmentation](./examples/segmentation/binary_semantic_segmentation/) - [Multiclass Semantic Segmentation](./examples/segmentation/multiclass_semantic_segmentation/) - [Description](./examples/description/) - [Tagging](./examples/description/tagging/README.md) - [Captioning](./examples/description/captioning/README.md) - [Estimation](./examples/estimation/) - [Pose Estimation](./examples/estimation/pose_estimation/README.md) - [Depth Estimation](./examples/estimation/depth_estimation/README.md) - [OCR](./examples/optical_character_recognition/) - [Text Recognition](./examples/optical_character_recognition/text_recognition/) - [Key Information Extraction](./examples/optical_character_recognition/key_information_extraction/README.md) - [MOT](./examples/multiple_object_tracking/README.md) - [Tracking by HBB Object Detection](./examples/multiple_object_tracking/README.md) - [Tracking by OBB Object Detection](./examples/multiple_object_tracking/README.md) - [Tracking by Instance Segmentation](./examples/multiple_object_tracking/README.md) - [Tracking by Pose Estimation](./examples/multiple_object_tracking/README.md) - [iVOS](./examples/interactive_video_object_segmentation/README.md) - [Matting](./examples/matting/) - [Image Matting](./examples/matting/image_matting/README.md) - [Vision-Language](./examples/vision_language/) - [Florence 2](./examples/vision_language/florence2/README.md) - [Counting](./examples/counting/) - [GeCo](./examples/counting/geco/README.md) - [Training](./examples/training/) - [Ultralytics](./examples/training/ultralytics/README.md) ## Contribute We believe in open collaboration! **X‑AnyLabeling** continues to grow with the support of the community. Whether you're fixing bugs, improving documentation, or adding new features, your contributions make a real impact. To get started, please read our [Contributing Guide](./CONTRIBUTING.md) and make sure to agree to the [Contributor License Agreement (CLA)](./CLA.md) before submitting a pull request. If you find this project helpful, please consider giving it a ⭐️ star! Have questions or suggestions? Open an [issue](https://github.com/CVHub520/X-AnyLabeling/issues) or email us at cv_hub@163.com. A huge thank you 🙏 to everyone helping to make X‑AnyLabeling better. ## License This project is licensed under the [GPL-3.0 license](./LICENSE) and is only free to use for personal non-commercial purposes. For academic, research, or educational use, it is also free but requires registration via this form [here](https://forms.gle/MZCKhU7UJ4TRSWxR7). If you intend to use this project for commercial purposes or within a company, please contact cv_hub@163.com to obtain a commercial license. ## Acknowledgement I extend my heartfelt thanks to the developers and contributors of [AnyLabeling](https://github.com/vietanhdev/anylabeling), [LabelMe](https://github.com/wkentaro/labelme), [LabelImg](https://github.com/tzutalin/labelIm), [roLabelImg](https://github.com/cgvict/roLabelImg), [PPOCRLabel](https://github.com/PFCCLab/PPOCRLabel) and [CVAT](https://github.com/opencv/cvat), whose work has been crucial to the success of this project. ## Citing If you use this software in your research, please cite it as below: ``` @misc{X-AnyLabeling, year = {2023}, author = {Wei Wang}, publisher = {Github}, organization = {CVHub}, journal = {Github repository}, title = {Advanced Auto Labeling Solution with Added Features}, howpublished = {\url{https://github.com/CVHub520/X-AnyLabeling}} } ``` --- ![Star History Chart](https://api.star-history.com/svg?repos=CVHub520/X-AnyLabeling&type=Date)
🔝 Back to Top