# RL-ROBOT
**Repository Path**: jiaojianjun-com/RL-ROBOT
## Basic Information
- **Project Name**: RL-ROBOT
- **Description**: 机器人强化学习框架
- **Primary Language**: Unknown
- **License**: GPL-3.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 0
- **Created**: 2023-11-30
- **Last Updated**: 2025-11-21
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# RL-ROBOT
Ángel Martínez-Tenor - 2016
This repository provides a Reinforcement Learning framework in Python from the Machine Perception and Intelligent Robotics research group [(MAPIR)](http://mapir.isa.uma.es).
Reference: *Towards a common implementation of reinforcement learning for multiple robotics tasks*. [Arxiv preprint](https://arxiv.org/abs/1702.06329)
[ScienceDirect](http://www.sciencedirect.com/science/article/pii/S0957417417307613)
## Getting Started
**Setup**
- Create a python environment and install the requirements. e.g. using conda:
```
conda create -n rlrobot python=3.10
conda activate rlrobot
pip install -r requirements.txt
# tkinter: sudo apt install python-tk
```
**Run**
- Execute ```python run_custom_exp.py``` (content below)
~~~
import exp
import rlrobot
exp.ENVIRONMENT_TYPE = "MODEL" # "VREP" for V-REP simulation
exp.TASK_ID = "wander_1k"
exp.FILE_MODEL = exp.TASK_ID + "_model"
exp.ALGORITHM = "TOSL"
exp.ACTION_STRATEGY = "QBIASSR"
exp.N_REPETITIONS = 1
exp.N_EPISODES = 1
exp.N_STEPS = 60 * 60
exp.DISPLAY_STEP = 500
rlrobot.run()
~~~
- Full set of parameters available in `exp.py`
- Tested on Ubuntu 14,16 ,18, 20 (64 bits)
## V-REP settings:
Tested: V-REP PRO EDU V3.3.2 / V3.5.0

1. Use default values of `remoteApiConnections.txt`
~~~
portIndex1_port = 19997
portIndex1_debug = false
portIndex1_syncSimTrigger = true
~~~
2. Activate threaded rendering (recommended):
`system/usrset.txt -> threadedRenderingDuringSimulation = 1`
Recommended simulation settings for V-REP scenes:
* Simulation step time: 50 ms (default)
* Real-Time Simulation: Enabled
* Multiplication factor: 3.00 (required CPU >= i3 3110m)
**Execute V-REP**
(`./vrep.sh on linux`). `File -> Open Scene -> /vrep_scenes`